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Abstract
The mapping transformation technique is applied to obtain exact results for the
spin-1/2 and spin-S (S = 1/2, 1) Ising–Heisenberg antiferromagnetic chain
in the presence of an external magnetic field. Within this scheme, a field-
induced first-order metamagnetic phase transition resulting in multiplateau
magnetization curves is investigated in detail. It is found that the scenario
of the plateau formation depends fundamentally on the ratio between Ising
and Heisenberg interaction parameters, as well as on the strength of the XXZ
Heisenberg exchange anisotropy.

1. Introduction

Quantum antiferromagnetism in lower dimensions is one of the most fascinating subjects in
condensed matter physics. In particular, the antiferromagnetic quantum Heisenberg chains
(AFQHC) with small spins have attracted much attention on account of the rich quantum
behaviour they display. Nevertheless, due to strong quantum fluctuations the classical Néel
state is no longer an eigenstate of the Hamiltonian, and thus more interesting quantum phases
should be expected to occur in the ground state. The nature of these phases, however, basically
depends on the spin value of atoms. In fact, as conjectured by Haldane [1] in 1983, the integer
spin AFQHC have a finite energy gap between the ground state and the first excited state, while
the half-odd integer ones possess a gapless excitation spectrum.

Another striking feature of the AFQHC is the appearance of fractional magnetization
plateaus in the magnetization process. Extending the original Lieb–Schultz–Mattis theorem [2]
Oshikawa, Yamanaka and Affleck (OYA) [3] argued that the magnetization per site m can be
topologically quantized as p(Su − m) = integer, where p is a period of ground state in
the thermodynamic limit and Su denotes the total spin of an elementary unit. However, this
condition represents just the necessary condition for plateau-state formation and does not
directly prove its existence. It is therefore of interest to investigate how the plateau state is
related to the periodicity of a specific model [4]. Moreover, from the theoretical viewpoint
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Figure 1. Part of the doubly decorated mixed-spin chain. The black circles denote the spin-1/2
Ising atoms of sublattice A and the grey ones represent the decorating spin-S Heisenberg atoms of
sublattice B . The ellipse demarcates a typical bond described by the Hamiltonian Ĥk introduced
in equation (2).

the plateau state can also be regarded as a spin-gap state. Hence, the zero-temperature
magnetization curves with plateaus bring an insight into the ground-state properties of the
system, since the field-induced spin gaps reflect the gapped excitation spectrum.

Despite an extensive theoretical effort focused on AFQHC, there still exist only a few
exactly solvable models with pure Heisenberg exchange interactions [5], especially for mixed-
spin chains [6]. On the other hand, an exact solution for chains with alternating Ising- and
Heisenberg-type exchange interactions can be attained in a less sophisticated manner. Indeed,
the exact solution for the Ising–Heisenberg bond alternating chain (originally proposed and
solved by Lieb et al [2]), has recently been successfully generalized to the case of anisotropic
Heisenberg interaction [7]. In order to avoid mathematical complexities connected with the
noncommutability of relevant spin operators, we will introduce in this paper another class of
Ising–Heisenberg chains (with period p = 3) that can be treated exactly within the mapping
transformation method. However, the considered model naturally enables us to analyse in
detail the mutual competition between Ising- and Heisenberg-type interactions and, moreover,
it also proves to be very useful in view of the confirmation of multiplateau magnetization
curves by an exact calculation.

This paper is organized as follows. In section 2 a detailed description of the model as
well as the fundamental aspects of transformation technique are presented. In section 3 we
are concerned with the analysis of the most interesting numerical results for typical spin cases
and finally, in section 4, some concluding remarks are given.

2. Model and method

In this paper we will study a mixed spin-1/2 and spin-S (S = 1/2, 1) Ising–Heisenberg chain
in the presence of an external magnetic field. The structure of the considered mixed-spin chain
is depicted in figure 1, where the black circles denote the spin-1/2 atoms and the grey ones
represent the spin-S atoms. The total Hamiltonian of the system is given by:

Ĥ = J
∑
i, j

[�(Ŝx
i Ŝx

j + Ŝ y
i Ŝ y

j ) + Ŝz
i Ŝz

j ] + J1

∑
k,l

Ŝz
k µ̂

z
l − HA

∑
l

µ̂z
l − HB

∑
k

Ŝz
k , (1)

where µ̂z
l and Ŝα

k (α = x, y, z) denote the well-known components of standard spin-1/2
and spin-S (S = 1/2, 1) operators respectively. The parameter J stands for the Heisenberg
interaction between nearest-neighbour spin-S atoms (the grey atoms) and � is the anisotropy
parameter that allows control of the anisotropic XXZ interaction between an easy-axis regime
(� < 1) and an easy-plane regime (� > 1). Furthermore, the interaction parameter J1

describes the Ising-type exchange interaction between pairs of nearest-neighbour spin-1/2
and spin-S atoms, and finally the terms incorporating HA and HB respectively describe the
coupling of spin-1/2 atoms and spin-S atoms to an external magnetic field. As we can see
from figure 1, all pairs of nearest-neighbour Heisenberg atoms are surrounded by Ising-type
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atoms only, thus the model under investigation can also be viewed as an Ising model the bonds
of which are doubly decorated by the Heisenberg atoms. In view of further manipulations, it is
useful to rewrite the total Hamiltonian Ĥas a sum of the bond Hamiltonians, i.e. Ĥ = ∑N

k=1 Ĥk ,
where N denotes the total number of Ising-type atoms and the summation runs over all bonds
of the original (undecorated) chain. The bond Hamiltonian Ĥk contains all the interaction
terms associated with the kth couple of Heisenberg atoms (see figure 1), and it is given by

Ĥk = J [�(Ŝx
k1 Ŝx

k2 + Ŝ y
k1 Ŝ y

k2) + Ŝz
k1 Ŝz

k2] + J1(Ŝz
k1µ̂

z
k1 + Ŝz

k2µ̂
z
k2)

− HB(Ŝz
k1 + Ŝz

k2) − HA(µ̂z
k1 + µ̂z

k2)/2. (2)

Now, exploiting the usual commutation relation for the bond Hamiltonians (i.e. [Ĥk, Ĥ j ] = 0,
for k �= j ), the partition function of the system can be partially factorized, namely

Z = Tr{µ}
N∏

k=1

TrSk1 TrSk2 exp(−βĤk). (3)

In the above, β = (kB T )−1, kB being Boltzmann constant and T the absolute temperature.
Tr{µ} means a trace over the degrees of freedom of the Ising spins and TrSk1 TrSk2 denotes a
trace over the kth couple of Heisenberg spins. At this stage one can easily observe that the
structure of relation (3) implies the possibility of introducing the decoration–iteration mapping
transformation [8]

TrSk1 TrSk2 exp(−βĤk) = A exp[β Rµz
k1µ

z
k2 + β H0(µ

z
k1 + µz

k2)/2]. (4)

As usual, the unknown transformation parameters A, R and H0 can be attained by taking into
account the remaining degrees of freedom of both Ising spins (µk1 and µk2). In this way one
obtains the following expressions for the transformation parameters A, R and H0:

A = (V1V2V 2
3 )1/4, β R = ln

(
V1V2

V 2
3

)
, β H0 = β HA − ln

(
V1

V2

)
, (5)

where the functions V1, V2 and V3 depend on the spin value of Heisenberg atoms, as well as
on the parameters of the Hamiltonian (1), and they are summarized for both investigated spin
cases in the appendix.

Here, one should emphasize that the mapping relations (4), (5) enable us to transform
the Ising–Heisenberg mixed-spin chain onto a simple spin-1/2 Ising chain with an effective
exchange parameter R, placed in an external magnetic field of magnitude H0. Indeed,
substituting (4) into (3) gives the following equality

Z(β, J, J1,�, HA, HB) = ANZ0(β, R, H0), (6)

which relates the partition function of the Ising–Heisenberg chain Z and that of the spin-
1/2 Ising chain Z0. Since the explicit expression for Z0 is well known [9], we can then
straightforwardly calculate all relevant thermodynamic quantities. For example, the Gibbs
free energy G of the mixed-spin Ising–Heisenberg chain is given by

G = G0 − NkB T ln A, (7)

where G0 = −kB T ln Z0 denotes the Gibbs free energy of the corresponding spin-1/2 Ising
chain. Next, by differentiating the Gibbs free energyG with respect to HA and HB respectively,
one directly obtains the solution for the total sublattice magnetization. Of course, other
thermodynamic quantities can also be calculated on the basis of familiar thermodynamic
relations, e.g. the entropy S and the specific heat C can be calculated from

S = −
(

∂G

∂T

)
H

, C = −T

(
∂2G

∂T 2

)
H

. (8)
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Nevertheless, a similar thermodynamic approach cannot be used for the calculation of
other important quantities such as staggered magnetization, quadrupolar momentum or some
correlations. Fortunately, equation (6) in conjunction with the transformation formula (4)
allows, after some elementary algebra, the derivation of following exact spin identities [10]

〈 f1(µ̂
z
i , µ̂

z
j , . . . , µ̂

z
k, )〉 = 〈 f1(µ̂

z
i , µ̂

z
j , . . . , µ̂

z
k, )〉0,

〈 f2(Ŝα
k1, Ŝγ

k2, µ̂
z
k1, µ̂

z
k2)〉 =

〈
TrSk1 TrSk2 f2(Ŝα

k1, Ŝγ

k2, µ̂
z
k1, µ̂

z
k2) exp(−βĤk)

TrSk1 TrSk2 exp(−βĤk)

〉
,

(9)

with arbitrary function f1 depending exclusively on Ising spin variables and the function f2

depending on the spin variables from the kth bond only. The superscripts α, γ ≡ (x, y, z)
label the spatial components of spin operators, and finally the symbols 〈· · ·〉 and 〈· · ·〉0 stand
for the standard ensemble average in the Ising–Heisenberg and its equivalent simple Ising
model respectively. However, the above spin identities considerably simplify the calculation
of a large number of quantities. Indeed, for the reduced sublattice magnetization (mz

A, mz
B),

the total single-site magnetization m and the staggered sublattice magnetization (ms
A, ms

B), one
attains, after straightforward algebra,

mz
A ≡ 1

2 〈µ̂z
k1 + µ̂z

k2〉 = 1
2 〈µ̂z

k1 + µ̂z
k2〉0 ≡ m0,

mz
B ≡ 1

2 〈Ŝz
k1 + Ŝz

k2〉 = (V4/V1 − V5/V2 + 2V6/V3)/2

− 2m0(V4/V1 + V5/V2) + 2ε0(V4/V1 − V5/V2 − 2V6/V3),

m ≡ (mz
A + 2mz

B)/3,

ms
A ≡ 1

2 〈µ̂z
k1 − µ̂z

k2〉 = 1
2 〈µ̂z

k1 − µ̂z
k2〉0 ≡ ms

0,

ms
B ≡ 1

2 〈Ŝz
k1 − Ŝz

k2〉 = −ms
0V7/V3.

(10)

In the above, m0, ms
0 and ε0 represent the reduced magnetization, staggered magnetization and

nearest-neighbour correlation of the corresponding undecorated Ising chain and the coefficients
V1–V7 are listed for both investigated spin cases in the appendix.

Finally, let us define some pair correlation functions and the quadrupolar momentum,
which are also very useful for understanding of magnetic properties of the system, namely

qxx
hh ≡ 〈Ŝx

k1 Ŝx
k2〉 ≡ 〈Ŝ y

k1 Ŝ y
k2〉, qzz

hh ≡ 〈Ŝz
k1 Ŝz

k2〉, qzz
ii ≡ 〈µ̂z

k1µ̂
z
k2〉 ≡ ε0,

qzz
ih ≡ 1

2 〈Ŝz
k1µ̂

z
k1 + Ŝz

k2µ̂
z
k2〉, η ≡ 1

2 〈(Ŝz
k1)

2 + (Ŝz
k2)

2〉. (11)

In these equations, the subscripts denote the type of atom and superscripts the space direction.
One should also notice that the definition of the parameter η is obviously meaningful for S � 1
only. Although, the derivation of relevant equations for these quantities is straightforward, the
calculation procedure by itself is rather lengthy and tedious, thus the details are not presented
here.

3. Numerical results and discussion

Before discussing the most interesting numerical results, it is worth mentioning that some
preliminary results for the ferromagnetic version of the model (J < 0, J1 < 0) have already
been published by the present authors elsewhere [11]. For this reason, in this paper we will
restrict our attention to the doubly decorated Ising–Heisenberg chain with antiferromagnetic
(AF) interactions only (i.e. J > 0, J1 > 0). The particular attention is focused on the ground-
state analysis and the appearance of plateaus in the chains with different decorating spin S.
Among other matters, we will directly prove the existence of a double-plateau magnetization
curve in the spin S = 1/2 chain; more precisely, the magnetization curve with plateaus at
m = 0 and 1/6. On the other hand, in the spin S = 1 chain a greater diversity of magnetization
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Figure 2. Ground-state phase boundaries in the �–H/J plane for J1/J = 1.0 and 2.0.

processes will be confirmed; in fact, we will prove the existence of double-plateau (m = 0 and
1/2), triple-plateau (m = 0, 1/6 and 1/2) and quadruple-plateau (m = 0, 1/6, 1/3 and 1/2)
magnetization curves.

In addition, since each couple of Heisenberg atoms is surrounded by the Ising atoms
only, the relevant spin deviations cannot propagate through the Ising bonds and therefore,
the quantum fluctuations are necessarily localized within the unit cell (within the four-spin
cluster consisting of the Heisenberg spin pair and its nearest-neighbour Ising spins). Owing
to this fact, the observed plateaus cannot be considered as OYA plateaus, i.e. plateaus with
a collective eigenstate extending over the whole chain. Nevertheless, it is interesting to note
that all observed fractional magnetizations satisfy the OYA condition for p = 6 (the period
of translational symmetry should be twice as large as the periodicity of Hamiltonian as a
consequence of an AF nature of the ground state).

3.1. Spin S = 1/2 chain

We begin our analysis by considering the effect of exchange anisotropy � and uniform magnetic
field (i.e. HA = HB = H ) on the ground-state phase boundaries of the spin S = 1/2 chain.
For this purpose, we have displayed in figure 2 some typical ground-state phase diagrams in
the �–H/J plane for J1/J = 1.0 and 2.0. As one can see from this figure, the relevant
phase boundaries separate three or four distinct phases, namely the AF, ferrimagnetic I (FI),
ferrimagnetic II (FII) and saturated paramagnetic (SP) phases. One also observes that both
ferrimagnetic phases (FI and FII) represent an intermediate phase between the AF and SP
phases occurring due to the first-order metamagnetic transition. As we have already mentioned,
different phases can be distinguished by analysing the magnetization and the correlation
functions at T = 0. In this way one finds the following ground-state results for particular
phases.

The AF phase:

(qxx
hh , qzz

hh, qzz
ih , qzz

ii , ms
A, ms

B) = (−J�Q−1,−1/4,−J1 Q−1,−1/4, 1/2,−2J1 Q−1);
where we have defined the function Q = 4

√
J 2

1 + (J�)2, in order to write the relevant
expressions in more abbreviated and elegant form.

Ferrimagnetic phase I (FI):

(qxx
hh , qzz

hh, qzz
ih , qzz

ii , mz
A, mz

B , m) = (−1/4,−1/4, 0, 1/4, 1/2, 0, 1/6).

Ferrimagnetic phase II (FII):

(qxx
hh , qzz

hh, qzz
ih , qzz

ii , mz
A, mz

B , m) = (0, 1/4,−1/4, 1/4,−1/2, 1/2, 1/6).
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Figure 3. Low-temperature (kB T/J = 0.01) magnetization curves for: (a) J1/J = 1.0 and
� = 1.0; (b)–(d) J1/J = 2.0 and � = 0.5, 1.0, 1.5. The solid and dotted (dashed) curves represent
the total magnetization per one site and the single-site magnetization of the Ising (Heisenberg)
sublattice respectively.

The SP paramagnetic phase:

(qxx
hh , qzz

hh, qzz
ih , qzz

ii , mz
A, mz

B , m) = (0, 1/4, 1/4, 1/4, 1/2, 1/2, 1/2).

Moreover, it is also noteworthy that all ground-state phase boundaries can be expressed
analytically as follows (see figure 2):

(a) for J1/J � 1.0

(1) H/J =
√

�2 + (J1/J )2 − �, (2) H/J = (� + J1/J )/2 + 1/2, (12)

(b) J1/J > 1.0

(1) H/J =
√

�2 + (J1/J )2 − �, (2) H/J = (� + J1/J )/2 + 1/2,

(3) H/J =
√

�2 + (J1/J )2 − J1/J + 1, (4) H/J = J1/J,

(5) � = J1/J − 1.

(13)

In order to demonstrate the diversity of the magnetization process, we have plotted
in figure 3 the low-temperature magnetization curves for various exchange anisotropies �.
Detailed examination of these dependences reveals that the mechanism of the magnetization
process depends basically on the ratio between Ising and Heisenberg interaction constants,
and more specifically on whether J1/J � 1.0 or J1/J > 1.0. In the former case, the plateau
state arises due to the alignment of the Ising spins towards the direction of the external field
(FI phase) regardless of the anisotropy strength � (see figure 3(a)). Naturally, in this case
there is no other possibility for the formation of an intermediate plateau. On the other hand,
in the case of J1/J > 1.0 the metamagnetic transition to the FI phase can be observed for the
stronger anisotropies � only (see figure 3(d)), while for the weaker anisotropies the FII phase
becomes the stable one. In this phase, the Heisenberg (Ising) spins align parallel (antiparallel)
with respect to the direction of the external field as is apparent from figure 3(b). Moreover, the
situation for the most interesting point at which both intermediate phases (FI and FII) coexist
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correlation functions depicted for J1/J = 2.0 and various anisotropies � = 0.5, 1.0 and 1.5.

is depicted in figure 3(c). Referring to this plot, the coexistence of both ferrimagnetic phases
is also reflected in the mixed feature of the magnetization curve (compare magnetization curve
from figure 3(c) with those in figures 3(b) and (d)).

In order to enable an independent check of the magnetization scenario,we have also studied
the relevant low-temperature dependences of the nearest-neighbour correlation functions
introduced in equation (11). In figure 4(a), the variations of the correlation functions with
anisotropy � are shown for the system without an external magnetic field. As one can see, the
correlation function qzz

hh between Heisenberg spins takes its saturation value irrespective of �,
which means that all nearest-neighbour Heisenberg spin pairs align antiparallel with respect
to each other. Moreover, the saturated value of correlation qzz

ii = −1/4 indicates a perfect AF
alignment also in the Ising sublattice (between third nearest-neighbour Ising spins). Contrary
to this behaviour, the perfect antiparallel alignment between Ising and Heisenberg spins is
destroyed as � increases from zero (see the correlation qzz

ih ). Hence, the Ising and Heisenberg
spins are oriented randomly with respect to each other, the degree of randomness being greater
the stronger the exchange anisotropy �. In addition, it is clear that the anisotropy term � is
also responsible for the onset of an interesting short-range ordering (nonzero qxx

hh ) in the xy
plane. Anyway, the value of correlation qxx

hh can be thought of as a measure of the strength
of local quantum fluctuations appearing in the spin system. Furthermore, in figures 4(b)–
(d) we have displayed the field dependences of the correlation functions corresponding to
the magnetization curves from figures 3(b)–(d). The depicted behaviour for the correlation
functions is in complete agreement with results for the magnetization curves, and, moreover,
it enables better understanding of the magnetic ordering in the relevant phases. As a typical
example we can mention the ferrimagnetic phases. Although the total magnetization of both
the FI and FII phases is the same, the results for other quantities indicate a fundamental
difference between them. In fact, in the FI phase the pairs of Heisenberg spins create singlet
dimers and thus they do not contribute to the total magnetization which is nonzero due to the
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Figure 5. Thermal variations of the total magnetization for some typical values of the external
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fully polarized Ising spins only, as already stated. This observation would suggest that the
formation of an FI plateau state should be based on the quantum mechanism with a significant
influence of local quantum fluctuations. In contrast to this, the FII phase represents the standard
ferrimagnetically ordered phase usually observed in pure Ising systems. Indeed, the generation
of the FII plateau state is nothing but the gapped excitation from the Néel state, implying a
magnetization process with a ‘classical’ Ising-like mechanism. Finally, one should notice that
after exceeding the saturation field given by conditions (12) and (13), the ground state becomes
fully polarized (SP phase) and all spins are aligned in the direction of the external field.

Now, let us investigate the finite-temperature behaviour of the system. Firstly, we take a
closer look at the thermal dependences of total magnetization that are shown in figure 5. As we
can see, the initial value of total magnetization takes one of three possible values m = 0, 1/6
or 1/2 for the AF, FI (FII) or SP phase respectively. Furthermore, there are two special cases
which correspond to the coexistence of the relevant phases. In these cases, we have obviously
obtained m = 1/12 or 1/3 at T = 0. It is also easy to observe here that the most interesting
dependences appear for external fields from the neighbourhood of phase boundaries. Hence,
the observed rapid increase (decrease) of the magnetization can be attributed to the thermal
excitations of huge number of spins which occur due to the competitive influence of both
phases.

For completeness, we have also plotted the entropy (figure 6(a)) and the specific heat (fig-
ures 6(b)–(d)) as a function of temperature. As one can expect, the entropy of the system does
not vanish for the boundary external-field values H/J = 1.0 and 2.25, at which the relevant
phases coexist in the ground state (see figure 6(a)). However, we should mention that for any
other external fields the entropy vanishes as the temperature goes to zero. Another quantity
which is also interesting from the experimental point of view is the specific heat. The thermal
variations of this quantity are depicted in figure 6(b) for the same values of H/J as for entropy
in figure 6(a). The displayed behaviour indicates a round Schottky-type maximum,whereas the
stronger the external field, the flatter and broader the maximum. Apart from this trivial finding,
one can also observe the double-peak specific heat curves (see figures 6(c) and (d)). The first
peak which occurs in the specific heat curve at lower temperature is evidently closely related
to the rapid variation of the magnetization (compare figures 6(c), (d) with 5(b)). Moreover, it
turns out that the maximum of this peak can be located approximately in the middle of the fer-
rimagnetic region (in our case around H/J ≈ 1.5). On the other hand, the second peak may be
thought as a Schottky-like peak resulting from the AF short-range order. Indeed, the relevant
thermal dependences for the nearest-neighbour correlations strongly support this statement.
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Figure 6. Thermal behaviour of the system for J1/J = 2.0, � = 1.5 and several values of external
field: (a) entropy plot versus temperature; (b)–(d) variations of the specific heat with temperature.

In the following subsection we examine the spin S = 1 chain in order to clarify the
influence of decorating spin on the magnetic properties of the system.

3.2. Spin S = 1 chain

We start our discussion once again with an analysis of the ground state. In order to establish
correct ground-state phase boundaries all relevant quantities have been examined in detail.
From this analysis one can conclude that depending on the ratio between J1, J (�) and H , a
total of six different phases can appear in the ground state (see ground-state phase diagrams in
figures 7(a) and 9(a), (b)). In this subsection, we will first describe details of the spin ordering
emerging in the appropriate ground-state phases, and then we will show how the scenario of
the magnetization process depends on the parameters of the model.

In the AF phase one finds a perfect AF alignment in the Ising sublattice (i.e. ms
A = 1/2

and qzz
ii = −1/4) regardless of the strength of the exchange anisotropy �. Accordingly, the

relevant spin order in the Ising sublattice is completely identical to that in the AF phase of
the spin S = 1/2 chain. Nevertheless, in contrast to the spin S = 1/2 case, the antiparallel
alignment between nearest-neighbour Heisenberg spins is weakened along the z-axis as �

increases from zero. In fact, the correlation qzz
hh tends monotonically from its classical Ising

value qzz
hh = −1 at � = 0 to qzz

hh = −1/2 for large � (see e.g. figure 8(a)). In addition,
one can also easily prove the validity of relation η = |qzz

hh | in the whole AF region. This
observation would suggest that � supports the spin reorientation of Heisenberg spin pairs,
namely from the antiparallel oriented Heisenberg spin pair (one spin in Sz = −1 state, another
one in spin Sz = 1 state to be further denoted as the ‘1–1’ spin pair) towards the spin pair
with both Heisenberg spins in the spin Sz = 0 state (the ‘00’ spin pair). However, in the large
� limit both types of Heisenberg spin pair (‘1–1’ as well as ‘00’) are equally well populated
and with a high probability also randomly distributed among Ising spins. This suggestion is
strongly supported by results for the correlation qzz

ih and staggered magnetization ms
B which

asymptotically tend to zero as � → ∞ (figure 8(a)). Finally, one should also notice that all
these effects could originate from the onset of the AF short-range ordering in the xy plane
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(dashed), qxx
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ih (solid), qzz
ii (dashed–dotted), quadrupolar momentum η (dashed–dotted–

dotted) and staggered sublattice magnetization ms
B (solid curve): (a) zero-field variations of relevant

quantities with anisotropy �; (b)–(d) field-dependences of correlations for selected values of �.

(nonzero qxx
hh ) that is the stronger (up to the value 1/

√
2) the greater the exchange anisotropy

strength �.
Now, let us turn our attention to both the FI and FII ferrimagnetic phases. As in the

spin S = 1/2 case, the nonzero total magnetization of the FI phase arises due to the fully
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polarized Ising spins only (mz
A = 1/2 and qzz

ii = 1/4), while the Heisenberg sublattice does
not contribute to the total magnetization at all (mz

B = 0 and qzz
ih = 0). Since the FI phase

can arise by increasing the external field from the AF phase only (see figures 7(a), 9(a), (b)),
it is of interest to compare the relevant spin ordering in both phases. Actually, one still finds
η = |qzz

hh| to be valid, but the nearest-neighbour correlation qzz
hh(q

xx
hh ) is weaker (stronger) in

the FI phase with respect to that in the AF phase (figure 8(d)). These results are taken to mean
that the number of nearest-neighbour ‘00’ spin pairs increases (of course, only up to one-half
of the total number of pairs) as one passes through the AF–FI phase boundary. Moreover, the
appearance of a massive short-range order in the xy plane strongly implies the relevance of
local quantum fluctuations also in the FI phase. On the other hand, in the second ferrimagnetic
phase FII we have found the following results

(qxx
hh , qzz

hh, qzz
ih , qzz

ii , η, mz
A, mz

B , m) = (0, 1,−1/2, 1/4, 1,−1/2, 1, 1/2),

indicating the ‘classical’ character of this phase that is usually observed in pure Ising spin
systems as well. As the relevant spin ordering is thoroughly analogous to that in the FII phase
of the spin S = 1/2 chain, for brevity we will not repeat its description here.

The most interesting spin order, however, can be found in the valence-bond (VB) phase
and the intermediate phase (IP). Actually, for instance in the VB phase, one finds

(qxx
hh , qzz

hh, qzz
ih , qzz

ii , η, mz
A, mz

B , m) = (−1/2, 0, 1/4, 1/4, 1/2, 1/2, 1/2, 1/2).

As one can see, in contrast to the fully polarized Ising sublattice (mz
A = 1/2 and qzz

ii = 1/4),
each couple of the nearest-neighbour Heisenberg spins consists of one polarized spin (Sz = 1)
and one spin in the Sz = 0 state, i.e. the spin-‘01’ pair. It is interesting to note that the
symmetrization of both Heisenberg spin states can be achieved using the valence-bond-solid
(VBS) picture [12]. Accordingly, each spin-1 atom splits into one polarized spin-1/2 variable
with the fixed projection into the external field direction and one spin-1/2 variable with
the unfixed projection creating a valence bond. Thus, it is reasonable to assume that both
Heisenberg spins interchange their spin states (tunnelling between the Sz = 0 and 1 spin
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states) and therefore, they effectively act on the surrounding Ising spins as the spin-1/2 atoms
(see also the result for correlation qzz

ih ). However, the AF short-range order in the xy plane
(nonzero qxx

hh ), as well as the fact that the VB phase cannot be detected in the pure Ising system
(i.e. for � = 0), imply again the obvious influence of the local quantum fluctuations.

Perhaps the most striking spin alignment has been discovered in the IP phase. Among other
things, the perfect AF alignment between the Ising spins (ms

A = 1/2 and qzz
ii = −1/4) has been

confirmed in the IP phase, hence the total magnetization of the system (m = 1/3) is entirely
determined by the contribution of Heisenberg spins. Anyway, the results for the Heisenberg
sublattice magnetization mz

B = 1/2, correlation function qzz
hh = 0 and quadrupolar momentum

η = 1/2, clearly indicate that each couple of nearest-neighbour Heisenberg atoms comprises
the spin-‘01’ pair. However, since both Heisenberg spins are placed in the IP phase between
two non-equivalent Ising spins (one ‘up’, other ‘down’), the spin state interchange between
both Heisenberg atoms would lead to qzz

ih = 0 which is in contradiction with our numerical
result qzz

ih �= 0. On the other hand, if the Heisenberg atom in the spin Sz = 1 state were to be
strictly antiferromagnetically coupled to its nearest-neighbour Ising spin (spin ‘down’), then
we would have qzz

ih = −1/4. Nevertheless, our result for the correlation |qzz
ih | 	 1/4 indicates

only partial AF order between Ising and Heisenberg spins. This observation would suggest
that the spin-‘01’ Heisenberg pairs should be, to a certain degree, randomly distributed among
Ising spins. Finally, as one would expect, in the high-field limit the system undergoes a phase
transition towards the fully SP phase. As before, in the SP phase all Ising and Heisenberg
spins are completely aligned towards the direction of the external field, thus in the SP phase
one attains

(qxx
hh , qzz

hh, qzz
ih , qzz

ii , η, mz
A, mz

B , m) = (0, 1, 1/2, 1/4, 1, 1/2, 1, 5/6).

Now, let us proceed to examine the magnetization process of the system under
investigation. For this purpose, we have shown in figures 7(a) and 9(a), (b) the ground-state
phase diagrams in the �–H/J plane together with some typical examples of the magnetization
curves (figures 7(b)–(d) and 9(c), (d)) for three selected values of interaction parameters J1/J .
In order to provide an independent check of the magnetization scenario from figures 7(b)–(d),
the corresponding field dependences of the correlation functions and quadrupolar momentum
are displayed in figures 8(b)–(d). Obviously, all the above results are absolutely in accordance
with the aforementioned ground-state spin ordering. Moreover, through the comparison of
figures 7(a) and 9(a), (b) one can realize that the nature of magnetization process depends
basically on the ratio between the Ising and Heisenberg interaction parameters. In fact, the
stronger the Ising interaction J1 with respect to the Heisenberg one J (�), the broader the
parameter region corresponding to the ‘classical’ FII phase. Otherwise, the increasing influence
of the Heisenberg interaction J (�) causes the broadening of regions corresponding to the FI
and VB phase respectively, until the FII phase completely vanishes below J1/J < 2/3 (see
e.g. figure 9(a) where the FII phase is already missing). Consequently, in the FI and VB phases
one can expect that the effect of local quantum fluctuations plays an important role.

Although, the system exhibits a stepwise magnetization curve with an abrupt change of
the magnetization in the whole range of parameters (see figures 7(b)–(d) and 9(c), (d)), there
is a fundamental difference between the magnetization process in the ‘classical’ Ising-like
regime and that in the quantum regime. As a matter of fact, in the former case one observes
the double-plateau magnetization curve with the FII plateau state only, i.e. with the FII phase
as an intermediate state between the AF and SP phase (see figure 7(b)). Contrary to this, in the
latter case one can detect the double- (figure 7(c)), triple- (figure 7(d)) or quadruple-plateau
(figures 9(c), (d)) magnetization curves. The double-plateau magnetization curves are rather
rarely observable, since they arise due to the direct metamagnetic transition from the AF phase
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Figure 10. Thermal variations of the total magnetization for J1/J = 1.0 and two selected values
of �.

to the VB phase in a relatively narrow region of � only (see figure 7(a)). However, when the
mechanism of the magnetization process is driven by the Heisenberg interaction, i.e. under the
requirement of sufficiently small J1/J and sufficiently large �, the triple-plateau magnetization
curves with the transitions between AF–FI–VB–SP phases are always preferred (figure 7(d)).
Finally, one should also remark that if the condition � ≈ H/J ≈ J1/J > 1 is satisfied,
there also appear the extraordinary quadruple-plateau magnetization curves (see figure 9(b))
with the IP phase in a very narrow region of the external field. Indeed, we even found two
different possibilities for the quadruple–cascade transitions, namely the AF–FI–IP–FII–SP
cascade transitions (figure 9(c)) and the AF–FI–IP–VB–SP ones (figure 9(d)).

To conclude the analysis of the spin S = 1 chain, we will also briefly mention the
finite-temperature behaviour of the system under consideration. For this purpose, the thermal
variations of the total magnetization are plotted in figure 10 for J1/J = 1.0 and two selected
values of the anisotropy �. In agreement with the aforementioned arguments, one observes
here three and two field-induced transitions for the anisotropy strengths � = 1.0 and 0.55
respectively. Evidently, as the magnitude of the external field varies, the various thermal
dependences result from competition between the Ising interaction, Heisenberg interaction and
magnetic field. However, the most interesting dependences arise again for the external fields
from the vicinity of the phase boundaries. In such a case, the relevant thermal excitations result
in a very rapid change of magnetization due to the competing influence of the phases separated
by the relevant transition line. Moreover, it turns out that the narrower the interval of external
fields corresponding to the relevant phase, the more robust the change in the magnetization
that can be observed.

4. Conclusion

In the present paper we have obtained the exact solution of the mixed spin-1/2 and spin-
S (S = 1/2, 1) Ising–Heisenberg chain in an external magnetic field. The most important
result stemming from this study is the confirmation of a multistep magnetization process
by an exact calculation. Moreover, it has been proved that the character of the magnetization
process depends essentially on the ratio between the Ising and Heisenberg interactions,whereas
the XXZ anisotropy term � also allows it to be controlled in a decisive manner. Since the
presence of the nondiagonal interaction term J� is responsible for the onset of the local
quantum fluctuations, as we have also shown, it basically modifies an otherwise trivial Ising-
like behaviour. For example, in the case of the spin S = 1 chain one finds instead of the
double-plateau magnetization curve arising in the pure Ising spin system (� = 0), double-,
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triple- or even quadruple-plateau magnetization curves in the Ising–Heisenberg chain with
� �= 0. Altogether, the presented results indicate that extraordinarily rich ground-state phase
diagrams result from the competition between the easy-axis interactions J1, J and the easy-
plane interaction J�.

One should also emphasize that our research on Ising–Heisenberg chains has been
stimulated by the recent experimental works dealing with many quasi-1D mixed-spin
chains [13]. Although we are not aware of any quasi-1D system in which two kinds of
magnetic ions regularly alternate with p = 3 periodic fashion (AABAAB. . .), the recent
progress in molecular engineering [14] supports our hope that the synthesis of such a polymeric
chain should be possible in the near future. Structural derivatives of a novel polymeric chain
recently reported by Mukherjeee et al [15], seem to be the most promising candidates from this
point of view. In fact, the crystal structure of the above-mentioned polymeric chain consists
of the spin-1/2 CuII dimers linked through NiII monomers. Unfortunately, as a consequence
of the square-planar coordination of NiII ions in [NiII(CN)4]2− bridging groups, the NiII metal
ions are diamagnetic and thus, they do not contribute to the magnetism.

Finally, it should be stressed that the applied mapping transformation technique does
not require any restriction to the dimensionality of the spin system, and hence it can
be straightforwardly generalized to the mixed Ising–Heisenberg lattices in two and three
dimensions too [10].
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Appendix. Explicit expressions for the functions V1–V7

(a) Spin-1/2 chain.

V1 = 2 exp(−β J/4) cosh(β J1/2 + β HB) + 2 exp(β J/4) cosh(β J�/2)

V2 = 2 exp(−β J/4) cosh(β J1/2 − β HB) + 2 exp(β J/4) cosh(β J�/2)

V3 = 2 exp(−β J/4) cosh(β HB) + 2 exp(β J/4) cosh
(
β

√
J 2

1 + (J�)2/2
)

V4 = exp(−β J/4) sinh(β J1/2 + β HB)/2

V5 = exp(−β J/4) sinh(β J1/2 − β HB)/2

V6 = exp(−β J/4) sinh(β HB)/2,

V7 = 2J1 exp(β J/4)√
J 2

1 + (J�)2
sinh

(
β

√
J 2

1 + (J�)2/2
)
.

(b) Spin-1 chain.

V1 = 2 exp(−β J ) cosh(β J1 + 2β HB) + exp(2β J/3)W1

+ 4 cosh(β J1/2 + β HB) cosh(β J�)

V2 = 2 exp(−β J ) cosh(β J1 − 2β HB) + exp(2β J/3)W1

+ 4 cosh(β J1/2 − β HB) cosh(β J�)

V3 = 2 exp(−β J ) cosh(2β HB) + exp(2β J/3)W2

+ 4 cosh(β HB) cosh
(
β

√
J 2

1 + (2J�)2/2
)
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V4 = exp(−β J ) sinh(β J1 + 2β HB) + sinh(β J1/2 + β HB) cosh(β J�)

V5 = exp(−β J ) sinh(β J1 − 2β HB) + sinh(β J1/2 − β HB) cosh(β J�)

V6 = exp(−β J ) sinh(2β HB) + sinh(β HB) cosh
(
β

√
J 2

1 + (2J�)2/2
)

where the expressions W1 and W2 are given by:

W1 =
2∑

n=0

exp{−2β P1 cos[(φ1 + 2πn)/3]},

W2 =
2∑

n=0

exp{−2β P2 cos[(φ2 + 2πn)/3]},

P2
1 = (J/3)2 + 2(J�)2/3, P2

2 = (J/3)2 + 2(J�)2/3 + J 2
1 /3,

Q1 = (J/3)3 + J (J�)2/3, Q2 = (J/3)3 + J (J�)2/3 − J 3
1 ,

φ1 = arctan
(√

P6
1 − Q2

1/Q1

)
, φ2 = arctan

(√
P6

2 − Q2
2/Q2

)
.
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